Arginine vasopressin inhibits Kir6.1/SUR2B channel and constricts the mesenteric artery via V1a receptor and protein kinase C.
نویسندگان
چکیده
Kir6.1/SUR2B channel is the major isoform of K(ATP) channels in the vascular smooth muscle. Genetic disruption of either subunit leads to dysregulation of vascular tone and regional blood flows. To test the hypothesis that the Kir6.1/SUR2B channel is a target molecule of arginine vasopressin (AVP), we performed studies on the cloned Kir6.1/SUR2B channel and cell-endogenous K(ATP) channel in rat mesenteric arteries. The Kir6.1/SUR2B channel was expressed together with V1a receptor in the HEK-293 cell line. Whole cell currents of the transfected HEK cells were activated by K(ATP) channel opener pinacidil and inhibited by K(ATP) channel inhibitor glibenclamide. AVP produced a concentration-dependent inhibition of the pinacidil-activated currents with IC(50) 2.0 nM. The current inhibition was mediated by a suppression of the open-state probability without effect on single-channel conductance. An exposure to 100 nM PMA, a potent PKC activator, inhibited the pinacidil-activated currents, and abolished the channel inhibition by AVP. Such an effect was not seen with inactive phorbol ester. A pretreatment of the cells with selective PKC blocker significantly diminished the inhibitory effect of AVP. In acutely dissociated vascular smooth myocytes, AVP strongly inhibited the cell-endogenous K(ATP) channel. In isolated mesenteric artery rings, AVP produced concentration-dependent vasoconstrictions with EC(50) 6.5 nM. At the maximum effect, pinacidil completely relaxed vasoconstriction in the continuing exposure to AVP. The magnitude of the AVP-induced vasoconstriction was significantly reduced by calphostin-C. These results therefore indicate that the Kir6.1/SUR2B channel is a target molecule of AVP, and the channel inhibition involves G(q)-coupled V1a receptor and PKC.
منابع مشابه
PKA phosphorylation of SUR2B subunit underscores vascular KATP channel activation by beta-adrenergic receptors.
ATP-sensitive K(+) (K(ATP)) channels are activated by several vasodilating hormones and neurotransmitters through the PKA pathway. Here, we show that phosphorylation at Ser1387 of the SUR2B subunit is critical for the channel activation. Experiments were performed in human embryonic kidney (HEK) 293 cells expressing the cloned Kir6.1/SUR2B channel. In whole cell patch, the Kir6.1/SUR2B channel ...
متن کاملDifferences in the mechanism of metabolic regulation of ATP-sensitive K+ channels containing Kir6.1 and Kir6.2 subunits.
AIMS ATP sensitive K(+) channels (K(ATP)) sense adenine nucleotide concentrations and thus couple the metabolic state of the cell to membrane potential. The hetero-octameric complex of a sulphonylurea receptor (SUR2B) and an inwardly rectifying K(+) channel (Kir6.1) and the corresponding native channel in smooth muscle are relatively insensitive to variations in intracellular ATP. Activation of...
متن کاملArginine Vasopressin Enhances Cell Survival via a G Protein– Coupled Receptor Kinase 2/b-Arrestin1/Extracellular-Regulated Kinase 1/2–Dependent Pathway in H9c2 Cells
Circulating levels of arginine vasopressin (AVP) are elevated during hypovolemia and during cardiac stress. AVP activates arginine vasopressin type 1A (V1A)/Gaq–coupled receptors in the heart and vasculature and V2/Gas–coupled receptors in the kidney. However, little is known regarding the signaling pathways that influence the effects of V1A receptor (V1AR) activation during cellular injury. Us...
متن کاملDo anionic phospholipids serve as cofactors or second messengers for the regulation of activity of cloned ATP-sensitive K+ channels?
The regulation of ion channels by anionic phospholipids is currently very topical. An outstanding issue is whether phosphatidylinositol 4,5-diphosphate and related species act as true second messengers in signaling or behave in a manner analogous to an enzymatic cofactor. This question is especially pertinent regarding ATP-sensitive K+ channels in smooth muscle, for which there is substantial l...
متن کاملCoexpression with the inward rectifier K(+) channel Kir6.1 increases the affinity of the vascular sulfonylurea receptor SUR2B for glibenclamide.
ATP-sensitive K(+) channels are closed by the hypoglycemic sulfonylureas like glibenclamide (GBC) and activated by a class of vasorelaxant compounds, the K(+) channel openers. These channels are octamers of Kir6.x and sulfonylurea receptor (SUR) subunits with 4:4 stoichiometry. The properties of the opener-sensitive K(+) channel in the vasculature are well matched by the SUR2B/Kir6.1 channel; h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 293 1 شماره
صفحات -
تاریخ انتشار 2007